Question 1
Use the product rule: when $y=u\times v$, $\frac{\mathrm{d}y}{\mathrm{d}x}=v\frac{\mathrm{d}u}{\mathrm{d}x}+u\frac{\mathrm{d}v}{\mathrm{d}x}$ to differentiate the following:
a) $y=2x(3x+1)^3$
b) $y=5x(2x+3)^4$
c) $y=x(2x+5)^2$
d) $y=3x(1-x)^3$
e) $y=2x{(3x+2)}^{-1}$
f) $y=4x{(2-7x)}^{-6}$
Question 2
Use the product rule to differentiate the following:
a) $y={x^2}{(3x+5)}^5$
b) $y={x^3}{(5-x)}^6$
c) $y={2x^5}{(8x+3)}^{\frac{3}{2}}$
d) $y={6x^{-1}}{(2-5x)}^{3}$
e) $y={3x^{\frac43}}{(2-x)}^{-1}$
Question 3
Use product rule to differentiate:
a) $y=2x{(x^2-1)}^3$
b) $y=-4x{(x^3+8)}^5$
c) $y=x^2{(x^3+2)}^4$
d) $y=5x^2{(2x^4-8)}^{10}$
e) $y=10x^{\frac12}{(4x+6)}^{-1}$
f) $y=-8x^{2}{(4-5x)}^{-\frac54}$
g) $y={(5-2x^2)}^3\frac12x^{-1}$
Question 4
Use product rule to differentiate:
a) $y=(x+1)(x+2)$
b) $y={(x+1)}^2(x+2)$
c) $y={(x+1)}^2{(x+2)}^2$
d) $y={(2x+5)}^2{(x+5)}^3$
e) $y={(3-2x)}^3{(5x+7)}^5$
f) $y={(x^2+2)}{(x-3)}$
g) $y={(3x^2-2)}^3{(8x-4)}^4$
h) $y={(4x^3+2)}^3{(8x^2-3x)}^4$
i) $y={(3x^{-1}+2)}^3{(4x^2+3)}^{-1}$
j) $y=\sqrt{(2x+3)}{(3x+1)}$
Answers
Question 1
a) $\frac{\mathrm{d}y}{\mathrm{d}x}=2{(3x+1)}^3+18x{(3x+1)}^2$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=2{(12x+1)}{(3x+1)}^2$
b) $\frac{\mathrm{d}y}{\mathrm{d}x}=5{(2x+3)}^4+40x{(2x+3)}^3$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=5{(10x+3)}{(2x+3)}^3$
c) $\frac{\mathrm{d}y}{\mathrm{d}x}={(2x+5)}^2+4x{(2x+5)}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}={(2x+5)}{(6x+5)}$
d) $\frac{\mathrm{d}y}{\mathrm{d}x}=3{(1-x)}^3-9x{(1-x)}^2$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=3{(1-10x)}{(1-x)}^2$
e) $\frac{\mathrm{d}y}{\mathrm{d}x}=2{(3x+2)}^{-1}-6x{(3x+2)}^{-2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=4{(3x+2)}^{-2}$
f) $\frac{\mathrm{d}y}{\mathrm{d}x}=4{(2-7x)}^{-6}+168x{(2-7x)}^{-7}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=4{(35x+2)}{(2-7x)}^{-7}$
Question 2
a) $\frac{\mathrm{d}y}{\mathrm{d}x}=2x{(3x+5)}^{5}+15x^2{(3x+5)}^{4}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=x{(21x+10)}{(3x+5)}^{4}$
b) $\frac{\mathrm{d}y}{\mathrm{d}x}=3x^2{(5-x)}^{6}-6x^3{(5-x)}^{5}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=3x^2{(5-3x)}{(5-x)}^{5}$
c) $\frac{\mathrm{d}y}{\mathrm{d}x}=10x^4{(8x+3)}^{\frac32}+24x^5{(8x+3)}^{\frac12}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=2x^4{(52x+15)}{(8x+3)}^{\frac12}$
d) $\frac{\mathrm{d}y}{\mathrm{d}x}=-6x^{-2}{(2-5x)}^{3}-90x^{-1}{(2-5x)}^{2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=-12x^{-2}{(5x+1)}{(2-5x)}^{2}$
e) $\frac{\mathrm{d}y}{\mathrm{d}x}=4x^{\frac13}{(2-x)}^{-1}+3x^{\frac43}{(2-x)}^{-2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=x^{\frac13}{(8-x)}{(2-x)}^{-2}$
Question 3
a) $\frac{\mathrm{d}y}{\mathrm{d}x}=2{(x^2-1)}^{3}+12x^{2}{(x^2-1)}^{2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=2{(x^2-1)}^2{(7x^2-1)}$
b) $\frac{\mathrm{d}y}{\mathrm{d}x}=-4{(x^3+8)}^{5}-60x^{3}{(x^3+8)}^{4}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=-4{(x^3+8)}^4{(8-14x^3)}$
c) $\frac{\mathrm{d}y}{\mathrm{d}x}=2x{(x^3+2)}^{4}+12x^{4}{(x^3+2)}^{3}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=2x{(x^3+2)}^3{(7x^3+2)}$
d) $\frac{\mathrm{d}y}{\mathrm{d}x}=10x{(2x^4-8)}^{10}+400x^{5}{(2x^4-8)}^{9}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=10x{(2x^4-8)}^9{(42x^4-8)}$
e) $\frac{\mathrm{d}y}{\mathrm{d}x}=5x^{-\frac12}{(4x+6)}^{-1}-40x^{\frac12}{(4x+6)}^{-2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=10x^{-\frac12}{(4x+6)}^{-2}{(3-2x)}$
f) $\frac{\mathrm{d}y}{\mathrm{d}x}=-16x{(4-5x)}^{-\frac54}-50x^{2}{(4-5x)}^{-\frac94}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=-16x{(4-5x)}^{-\frac94}{(4-5x)}$
g) $\frac{\mathrm{d}y}{\mathrm{d}x}=-\frac12x^{-2}{(5-2x^2)}^{3}-6{(5-2x^2)}^{2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=-\frac12x^{-2}{(5-2x^2)}^{2}{(10x^2+5)}$
Question 4
a) $\frac{\mathrm{d}y}{\mathrm{d}x}=2x+3$
b) $\frac{\mathrm{d}y}{\mathrm{d}x}=2(x+1)(x+2)+{(x+1)}^2$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=(x+1)(3x+5)$
c) $\frac{\mathrm{d}y}{\mathrm{d}x}=2(x+1){(x+2)}^2+2{(x+1)}^2(x+2)$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=2(x+1)(x+2){(2x+3)}$
d) $\frac{\mathrm{d}y}{\mathrm{d}x}=4(2x+5){(x+5)}^3+3{(2x+5)}^2{(x+5)}^2$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=(2x+5){(x+5)}^2{(10x+35)}$
e) $\frac{\mathrm{d}y}{\mathrm{d}x}=-6{(3-2x)}^2{(5x+7)}^5+25{(3-2x)}^3{(5x+7)}^4$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}={(3-2x)}^2{(5x+7)}^4{(33-80x)}$
f) $\frac{\mathrm{d}y}{\mathrm{d}x}=2x{(x-3)}+{(x^2+2)}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=3x^2-6x+2$
g) $\frac{\mathrm{d}y}{\mathrm{d}x}=18x{(3x^2-2)}^2{(8x-4)}^4+24{(3x^2-2)}^3{(8x-4)}^3$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=24{(3x^2-2)}^2{(8x-4)}^3{(9x^2-3x-2)}$
h) $\frac{\mathrm{d}y}{\mathrm{d}x}=36x^2{(4x^3+2)}^2{(8x^2-3x)}^4+4{(16x-3)}{(4x^3+2)}^3{(8x^2-3x)}^3$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=18{(4x^3+2)}^2{(8x^2-3x)}^3{(48x^4-12x^3+16x-3)}$
i) $\frac{\mathrm{d}y}{\mathrm{d}x}=-9x^{-2}{(3x^{-1}+2)}^2{(4x^2+3)}^{-1}-8x{(3x^{-1}+2)}^3{(4x^3+3)}^{-2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=-9x^{-2}{(3x^{-1}+2)}^2{(4x^2+3)}^{-2}{(60x^2+16x^3+27)}$
j) $\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{3x+1}{\sqrt{2x+3}}+3\sqrt{2x+3}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{9x+10}{\sqrt{2x+3}}$
Question 1
Use the product rule: when $y=u\times v$, $\frac{\mathrm{d}y}{\mathrm{d}x}=v\frac{\mathrm{d}u}{\mathrm{d}x}+u\frac{\mathrm{d}v}{\mathrm{d}x}$ to differentiate the following:
a) $y=2x(3x+1)^3$
b) $y=5x(2x+3)^4$
c) $y=x(2x+5)^2$
d) $y=3x(1-x)^3$
e) $y=2x{(3x+2)}^{-1}$
f) $y=4x{(2-7x)}^{-6}$
Question 2
Use the product rule to differentiate the following:
a) $y={x^2}{(3x+5)}^5$
b) $y={x^3}{(5-x)}^6$
c) $y={2x^5}{(8x+3)}^{\frac{3}{2}}$
d) $y={6x^{-1}}{(2-5x)}^{3}$
e) $y={3x^{\frac43}}{(2-x)}^{-1}$
Question 3
Use product rule to differentiate:
a) $y=2x{(x^2-1)}^3$
b) $y=-4x{(x^3+8)}^5$
c) $y=x^2{(x^3+2)}^4$
d) $y=5x^2{(2x^4-8)}^{10}$
e) $y=10x^{\frac12}{(4x+6)}^{-1}$
f) $y=-8x^{2}{(4-5x)}^{-\frac54}$
g) $y={(5-2x^2)}^3\frac12x^{-1}$
Question 4
Use product rule to differentiate:
a) $y=(x+1)(x+2)$
b) $y={(x+1)}^2(x+2)$
c) $y={(x+1)}^2{(x+2)}^2$
d) $y={(2x+5)}^2{(x+5)}^3$
e) $y={(3-2x)}^3{(5x+7)}^5$
f) $y={(x^2+2)}{(x-3)}$
g) $y={(3x^2-2)}^3{(8x-4)}^4$
h) $y={(4x^3+2)}^3{(8x^2-3x)}^4$
i) $y={(3x^{-1}+2)}^3{(4x^2+3)}^{-1}$
j) $y=\sqrt{(2x+3)}{(3x+1)}$
Answers
Question 1
a) $\frac{\mathrm{d}y}{\mathrm{d}x}=2{(3x+1)}^3+18x{(3x+1)}^2$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=2{(12x+1)}{(3x+1)}^2$
b) $\frac{\mathrm{d}y}{\mathrm{d}x}=5{(2x+3)}^4+40x{(2x+3)}^3$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=5{(10x+3)}{(2x+3)}^3$
c) $\frac{\mathrm{d}y}{\mathrm{d}x}={(2x+5)}^2+4x{(2x+5)}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}={(2x+5)}{(6x+5)}$
d) $\frac{\mathrm{d}y}{\mathrm{d}x}=3{(1-x)}^3-9x{(1-x)}^2$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=3{(1-10x)}{(1-x)}^2$
e) $\frac{\mathrm{d}y}{\mathrm{d}x}=2{(3x+2)}^{-1}-6x{(3x+2)}^{-2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=4{(3x+2)}^{-2}$
f) $\frac{\mathrm{d}y}{\mathrm{d}x}=4{(2-7x)}^{-6}+168x{(2-7x)}^{-7}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=4{(35x+2)}{(2-7x)}^{-7}$
Question 2
a) $\frac{\mathrm{d}y}{\mathrm{d}x}=2x{(3x+5)}^{5}+15x^2{(3x+5)}^{4}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=x{(21x+10)}{(3x+5)}^{4}$
b) $\frac{\mathrm{d}y}{\mathrm{d}x}=3x^2{(5-x)}^{6}-6x^3{(5-x)}^{5}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=3x^2{(5-3x)}{(5-x)}^{5}$
c) $\frac{\mathrm{d}y}{\mathrm{d}x}=10x^4{(8x+3)}^{\frac32}+24x^5{(8x+3)}^{\frac12}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=2x^4{(52x+15)}{(8x+3)}^{\frac12}$
d) $\frac{\mathrm{d}y}{\mathrm{d}x}=-6x^{-2}{(2-5x)}^{3}-90x^{-1}{(2-5x)}^{2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=-12x^{-2}{(5x+1)}{(2-5x)}^{2}$
e) $\frac{\mathrm{d}y}{\mathrm{d}x}=4x^{\frac13}{(2-x)}^{-1}+3x^{\frac43}{(2-x)}^{-2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=x^{\frac13}{(8-x)}{(2-x)}^{-2}$
Question 3
a) $\frac{\mathrm{d}y}{\mathrm{d}x}=2{(x^2-1)}^{3}+12x^{2}{(x^2-1)}^{2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=2{(x^2-1)}^2{(7x^2-1)}$
b) $\frac{\mathrm{d}y}{\mathrm{d}x}=-4{(x^3+8)}^{5}-60x^{3}{(x^3+8)}^{4}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=-4{(x^3+8)}^4{(8-14x^3)}$
c) $\frac{\mathrm{d}y}{\mathrm{d}x}=2x{(x^3+2)}^{4}+12x^{4}{(x^3+2)}^{3}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=2x{(x^3+2)}^3{(7x^3+2)}$
d) $\frac{\mathrm{d}y}{\mathrm{d}x}=10x{(2x^4-8)}^{10}+400x^{5}{(2x^4-8)}^{9}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=10x{(2x^4-8)}^9{(42x^4-8)}$
e) $\frac{\mathrm{d}y}{\mathrm{d}x}=5x^{-\frac12}{(4x+6)}^{-1}-40x^{\frac12}{(4x+6)}^{-2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=10x^{-\frac12}{(4x+6)}^{-2}{(3-2x)}$
f) $\frac{\mathrm{d}y}{\mathrm{d}x}=-16x{(4-5x)}^{-\frac54}-50x^{2}{(4-5x)}^{-\frac94}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=-16x{(4-5x)}^{-\frac94}{(4-5x)}$
g) $\frac{\mathrm{d}y}{\mathrm{d}x}=-\frac12x^{-2}{(5-2x^2)}^{3}-6{(5-2x^2)}^{2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=-\frac12x^{-2}{(5-2x^2)}^{2}{(10x^2+5)}$
Question 4
a) $\frac{\mathrm{d}y}{\mathrm{d}x}=2x+3$
b) $\frac{\mathrm{d}y}{\mathrm{d}x}=2(x+1)(x+2)+{(x+1)}^2$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=(x+1)(3x+5)$
c) $\frac{\mathrm{d}y}{\mathrm{d}x}=2(x+1){(x+2)}^2+2{(x+1)}^2(x+2)$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=2(x+1)(x+2){(2x+3)}$
d) $\frac{\mathrm{d}y}{\mathrm{d}x}=4(2x+5){(x+5)}^3+3{(2x+5)}^2{(x+5)}^2$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=(2x+5){(x+5)}^2{(10x+35)}$
e) $\frac{\mathrm{d}y}{\mathrm{d}x}=-6{(3-2x)}^2{(5x+7)}^5+25{(3-2x)}^3{(5x+7)}^4$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}={(3-2x)}^2{(5x+7)}^4{(33-80x)}$
f) $\frac{\mathrm{d}y}{\mathrm{d}x}=2x{(x-3)}+{(x^2+2)}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=3x^2-6x+2$
g) $\frac{\mathrm{d}y}{\mathrm{d}x}=18x{(3x^2-2)}^2{(8x-4)}^4+24{(3x^2-2)}^3{(8x-4)}^3$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=24{(3x^2-2)}^2{(8x-4)}^3{(9x^2-3x-2)}$
h) $\frac{\mathrm{d}y}{\mathrm{d}x}=36x^2{(4x^3+2)}^2{(8x^2-3x)}^4+4{(16x-3)}{(4x^3+2)}^3{(8x^2-3x)}^3$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=18{(4x^3+2)}^2{(8x^2-3x)}^3{(48x^4-12x^3+16x-3)}$
i) $\frac{\mathrm{d}y}{\mathrm{d}x}=-9x^{-2}{(3x^{-1}+2)}^2{(4x^2+3)}^{-1}-8x{(3x^{-1}+2)}^3{(4x^3+3)}^{-2}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=-9x^{-2}{(3x^{-1}+2)}^2{(4x^2+3)}^{-2}{(60x^2+16x^3+27)}$
j) $\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{3x+1}{\sqrt{2x+3}}+3\sqrt{2x+3}$
or
$\frac{\mathrm{d}y}{\mathrm{d}x}=\frac{9x+10}{\sqrt{2x+3}}$